Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Viruses ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1687060

RESUMEN

Mathematical modelling of infection processes in cells is of fundamental interest. It helps to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps targeted by antiviral treatments. We previously developed a deterministic mathematical model of the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot accurately account for the stochastic nature of an infection process caused by natural fluctuation in reaction kinetics and the small abundance of participating components in a single cell. In the present work, this deterministic model is transformed into a stochastic one based on a Markov Chain Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2 binding affinity. The simulation results show that the type I IFN response has a very strong effect on inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to ACE2 turns out to be negligible for the probability of infection and viral production.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Interferón Tipo I/inmunología , Modelos Teóricos , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/inmunología , Simulación por Computador , Humanos , Cinética , Estadios del Ciclo de Vida , Cadenas de Markov , Unión Proteica , SARS-CoV-2/crecimiento & desarrollo , Procesos Estocásticos
2.
Viruses ; 13(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1390785

RESUMEN

SARS-CoV-2 infection represents a global threat to human health. Various approaches were employed to reveal the pathogenetic mechanisms of COVID-19. Mathematical and computational modelling is a powerful tool to describe and analyze the infection dynamics in relation to a plethora of processes contributing to the observed disease phenotypes. In our study here, we formulate and calibrate a deterministic model of the SARS-CoV-2 life cycle. It provides a kinetic description of the major replication stages of SARS-CoV-2. Sensitivity analysis of the net viral progeny with respect to model parameters enables the identification of the life cycle stages that have the strongest impact on viral replication. These three most influential parameters are (i) degradation rate of positive sense vRNAs in cytoplasm (negative effect), (ii) threshold number of non-structural proteins enhancing vRNA transcription (negative effect), and (iii) translation rate of non-structural proteins (positive effect). The results of our analysis could be used for guiding the search for antiviral drug targets to combat SARS-CoV-2 infection.


Asunto(s)
COVID-19/virología , Interacciones Huésped-Patógeno , Modelos Biológicos , SARS-CoV-2/fisiología , Replicación Viral , Algoritmos , Antivirales/farmacología , Humanos , Estadios del Ciclo de Vida , Modelos Teóricos , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA